

An In-memory Computing Accelerator, CMOS Annealing Machine, to Solve Combinatorial Optimization Problems

Masanao Yamaoka

Research & Development group, Hitachi, Ltd., Tokyo, Japan

07/11/2019 MPSoC Forum 2019

© Hitachi, Ltd. 2019. All rights reserved.

Outline

- Motivations
- Overview of CMOS annealing machine
- Prototypes of CMOS annealing machine
- Related necessary technologies
- Conclusion

System of IoT era

- Collecting and analyzing a lot of data
- Results used for controlling systems

Importance of optimization

- **Optimization processing used in various industries**
- **Optimization problem necessary to acquire optimum parameters**

Logistics operation

with images

Route selection (logistics/services)

Scheduling at wide-scale disaster

Learning plan customizing

Smart-grid control

Robotics control

Combinatorial optimization problem

- Problem to explore an optimum solution for minimum KPI in given conditions
- Enormous candidates of solution with large number of parameters: 2ⁿ patterns

Solving combinatorial optimization problem

- Inspire the Next
- Conventional computing calculating all KPIs and deciding combination of parameters for the best KPI
- Enormous calculation required when n is large
- Practically approximation algorithms used

New-paradigm, natural, computing

- Mapping problems to natural phenomena
- Solution acquired by convergence operation of natural phenomena
- Ising model used for optimization problems

Ising model for optimization problems

Ising model

- Ising model: expressing behavior of magnetic spins, upper or lower directions
- Spin status updated by interaction between spins to minimize system energy

$$H = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i \sigma_j - \sum_j h_j \sigma_j$$

H: Energy of Ising model σ_i : Spin status (+1/-1) J_{ij} : Interaction coefficient h_j : External magnetic coefficient

Computing with Ising model: annealing machine

- Inspire the Next
- Shape of landscape of lsing model energy same as KPI plot of combinatorial optimization problem
- By mapping original problems to Ising model, optimum solution acquired as ground state of model

Correspondence of parameters

Ising model	Optimization problems
Energy H	KPI
Spin status $\sigma_{ m i}$	Control parameters
Interaction coefficient J_{ij}	Input data (sensor data, etc)

Natural computing using Ising model: annealing machine Inspire the Next

- Mapping optimization problems to Ising model
- Convergence operation of Ising model
- Solution acquired by observing convergence results

Various implementation of annealing machines

- Quantum annealing machine, coherent Ising machine, CMOS annealing machine are proposed
- All machines based on Ising model

	Quantum annealing machine	Coherent Ising machine	CMOS annealing machine
Principle	Quantum annealing	Parametron	Classical annealing
Implementation	Superconductor	Laser oscillator	CMOS
Power	Large for cooling	Good	Better
Scalability	2kbit (2017)	2kbit (2016)	100kbit (2018)
Topology	Sparse	All to all	Sparse

Comparison of annealing machines

- For edge: Low cost, real time, room temperature, low power
- For cloud: High speed, low power, large scale, expandability

Method	Conventional computer	Quantum annealing machine	CMOS annealing machine
Devices	CPU	Superconductor	Semiconductor (CMOS)
Approach	Digital	Quantum bit	Digital
Calculation time	×	Ø	0
Temperature	Room temp.	15mK	Room temp.
Operation power	10-1,000W	15,000W (with cooling)	0.05W
Scalability	Enable	512 ('12) → 2048 ('17)	100kbit ('18)
Expandability	Enable	-	Multiple-chip

- Motivations
- Overview of CMOS annealing machine
- Prototypes of CMOS annealing machine
- Related necessary technologies
- Conclusion

In-memory computing for Ising-model computing

- In-memory structure suitable for mimicking Ising model convergence operation
- No memory access required in convergence operation

In-memory computing for Ising model

- Mimicking physical Ising model with in-memory structure
- Spin status updated by logic circuits implemented in memory

CMOS annealing

- Only digital operation, spin status stuck at local minimum status
- To avoid local minimum sticking, random status transition used
- Optimum solution not always acquired

 Transition to lower energy (adjacent spin interaction) →
 Avoidance of local minimum (random transition) ····>

- Spin status updated to lower Ising model energy
- Coefficient +: same direction
 Coefficient : opposite direction
- Majority of adjacent spins effect accepted

$$H = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i \sigma_j - \sum_j h_j \sigma_j$$

Spin status:
$$J_{ij} > 0: \text{ same direction}$$
$$J_{ij} < 0: \text{ opposite direction}$$

Spin update rules

Next spin status: in case a>b, σ_5 =+1 in case a<b, σ_5 =-1 in case a=b, σ_5 =+1 or -1 a=number of (+1, +1) or (-1, -1) b=number of (+1, -1) or (-1, +1) (value from adjacent spin, coefficient)

In-memory structure of CMOS annealing machine

- Spin-update rule achieved by majority voter
- Each spin has update circuit and updated in parallel
- Short calculation time even when number of spins is large

Circuit structure for 1 spin unit

- Next spin status digitally calculated
- Majority voter circuits for efficient calculation

$$H = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i \sigma_j - \sum_j h_j \sigma_j$$
Spin update rules
Next spin status:
in case a>b, σ_5 =+1
in case a\sigma_5=-1
in case a=b, σ_5 =+1 or -1
a=number of (+1, +1) or (-1, -1)
b=number of (+1, -1) or (-1, +1)
(value from adjacent spin, coefficient)

SRAM memory cell

- EXOR and sum of results of EXOR ("0" / "1") calculated by sum of currents
- Voltage of common lines evaluated by sense amplifiers

Precharge CT for numbers of (adjacent spin value, coefficient)=(+1, +1) or (-1, -1) σ4T_ °⁰Ţ᠆Į ^{σ6Β}⊣' "H" σ4B_ σ2T **σ2B σ8**Τ **σ8B** σ0T **σ0B** J41B IS1T_ IS1B_ J21T_ J21B J41T_/ J61T_ _____ J81T_ J81B_I J01T J01B_ **IS0**-J20-J40 — J60 -J80 -J00 -CB with same structure circuits CLKI _ for numbers of (-1, +1) or (-1, +1)

- Motivations
- Overview of CMOS annealing machine
- Prototypes of CMOS annealing machine
- Related necessary technologies
- Conclusion

	Items	Values
	Number of spins	20k (80 x 128 x 2)
	Process	65 nm
	Chip area	4x3=12 mm ²
•	Number of SRAM cells	260k bits Spin value: 20k bits Interaction coefficient: 240k bits
	Memory IF	100 MHz
	Interaction speed	100 MHz
	Operating current of core circuits (1.1 V)	Write: 2.0 mA Read: 6.0 mA Interaction: 44.6 mA

1st generation prototype

- Ising chips installed on computing node
- FPGA installed to control Ising chip
- Accessed via LAN cable from PCs/servers

Computing node

Configuration	2U rack mount	
Operation frequency	100 MHz	
Number of spins	40k (2chips)	
OS	Linux	

- Two sequences of 1-bit random numbers input, propagated, and evaluated at spin interaction
- Only two PRNGs provide randomness to whole chip

Random pulse control

- Spin flip rate gradually lowered for annealing
- Spin flip rate controlled by mark ratio of 1bit PRNGs

Measurement results of CMOS annealing

- MAX-cut problem, NP-complete problem, with 20k-spin solved
- Coefficient values set "ABC" appeared at optimum
- Optimum solution not always acquired

Operating energy

 1,800 times higher energy efficiency for 20k spin problem than approximation algorithm on CPU

Conditions: Randomly generated Maximum-cut problems, energy for same accuracy solution Ising chip: VDD=1.1 V, 100-MHz interaction, best solution among 10-times trial is selected. Approximation algorithm: SG3(*) is operated on Core i5, 1.87 GHz, 10 W/core.

2nd generation prototype

- For software development, FPGA prototype used
- Various structures for trials (various topology, various bit number of coefficient)

<u>Control PC</u> - FPGA control - Graph embedding algorithm

FPGA: Field Programmable Gate Array

Scalable inter-FPGA connectivity

- Inspire the Next
- Operate as a large-scale machine using chip-to-chip connection
- Local transmission for scalable connection of many FPGA boards

2nd generation 100kbit prototype

- нтасн **Inspire the Next**
- Connect 5x5 FPGAs and demonstrate 100k bit operation with the largest number of parameters

Item	Value
Number of parameters	102,400
Connection of Ising model	Partially coupled
Number of FPGA boards	25 (4,096 per 1FPGA)
FPGA operating frequency	82.5MHz
Parameter resolution	5bit (±15)
FPGA board	Xilinx® UltraScale®
Interconnect of FPGA	Xilinx® Aurora®

Performance comparison

- 156x speed improvement compared to conventional computer
- Larger number of parameters, greater speed improvement

Evaluation condition

Execute ground state search of randomly generated Ising model with SA on CMOS annealing machine and conventional computer (CPU), and compare time to reach reference accuracy obtained by existing algorithm

Annealing technique for higher precision

3rd generation prototype

- Include SQA algorithm to improve performance
- Improve solution accuracy by incorporating pseudo quantum effects

Xilinx VCU108 Evaluation Board	Item	Value
FPGA	Algorithm	Simulated Quantum Annealing (SQA)
	Implementation	FPGA
XCVU095	Тороlоду	King graph
PCI Express	# of spins	2500 (50×50)
Extension Cable	# of replicas	32
	Coefficient	8 bits (0, ±1, …, ±127)
Host PC (Linux)	Interaction	50 MHz

Simulated annealing

HITACHI Inspire the Next

• SA consists of discrete-time Markov processes that converge to Boltzmann distribution

Simulated Quantum Annealing

- Reproduce the quantum superposition effect by the SQA method
- Digital circuit implements SQA method

CMOS annealing machine based on SQA

- Each replica has the same combination of couplings and biases
- Memory for interaction coefficients shared

Speed comparison for optimization problem calculation

 Executes optimization processing (SA) 40 times faster than conventional methods

<u>Note</u>:

- Total annealing time means a time to obtain 99.9% solution with a probability of 99%
- 200 different random Ising models on a king graph are used
- We run the optimized SA program on a state-of-the-art CPU (Intel Core i7-6700K, 8 threads)

Performance of SQA based CMOS annealing machine

HITACHI Inspire the Next

- Supremacy over software SA for large size problems
- Computational amount reduced:
 Contributing to higher speed, lower power consumption

Card-size CMOS annealing machine for edge devices

- Prototype of 30-k spin annealing chip in 40 nm CMOS process
- Card sized CMOS annealing machine equipped with 2 chips (Realized optimization calculation of about 60,000 parameters)

Proposed inter-chip Interface

- 100-Mb/s LVDS I/F:2×88-bits data are split into 8×22-bits chunks
- Update values of dummy spin based on spin update rule

Annealing speed compared to CPU

- Fast annealing time: 22 μs (=22 clock cycles x 100 annealing steps)
- 2 x 30k spin system Max-Cut problem with randomly allocated coefficients

нітасні

Two-chip operation for Max-Cut problem

HITACHI Inspire the Next

- 2 chip operation confirmed with max cut problem
- Border line between chips disappears in the final low-temperature state

Energy efficiency compared to CPU

- Energy efficiency improves with increasing number of spins
- 2x30k spin system: 1.75x10⁵ higher than CPU

Comparison of annealing machines

- Multi-chip operation for larger scale confirmed
- Faster operation and higher energy efficiency achieved by new chip

	D-Wave 2000Q	1 st gen.	Multi-chip version
Method	Quantum annealing	Simulated annealing	
Accuracy	Better	Not so good	Good
Implementation	Superconductor	65-nm CMOS	40-nm CMOS
Number of chips	1	1	2 (multichip in principle)
Number of spins	2k	20k	2 × 30k
Annealing time*	-	10 ms***	22 μs
Energy efficiency*, **	-	2200 times***	1.75 × 10 ⁵ times

* Max-Cut problem is applied. ** These values are evaluated by comparing against running SA on CPU. *** These values are evaluated under the condition similar to this work.

- In-memory implementation for Ising model computing: Lower power operation with local-area process Higher operation speed with parallel operation
- Quantum-inspired algorithm: Higher speed and lower power consumption with smaller computational amount
- Multi-chip implementation by in-memory structure: Large-scale integration for larger problems

- Motivations
- Overview of CMOS annealing machine
- Prototypes of CMOS annealing machine
- Related necessary technologies
- Conclusion

How to solve "real" problems

Application of CMOS annealing machine

1. Frequency allocation for wireless radio

4. Image inpainting

2. Communication order allocation

3. Server security

5. Exploring explosion material 6. Image noise reduction

7. Facility allocation 8. Communi

8. Community core detection 9. Machin learning (Boosting)

Operation procedure

- Pre-processing required for application-specific computing using lsing model
- Generated data easily input/output using memory IF

Number Partitioning Problem (NPP)

 Finding a division of a set into 2 subsets such that the sums of each subset are as close as possible

Mapping of NPP to Ising model

HITACHI Inspire the Next

• Formulation of NPP mapped to Ising model formulation

Mapping of constrained NPP to Ising model

 Constrained optimization problem also mapped to Ising model formulation

Machine learning using Boltzmann machine

- HITACHI Inspire the Next
- Boosting technique and reinforcement learning proposed

Boosting:

finding optimum set of weak classifiers

Reinforcement learning:

using Ising model as Boltzmann machine

Graph embedding required for in-memory structure

- Many original problems have complex graph topology
- Graph embedding to use in-memory structure efficiently

Cloud environment for beginners

- Access to CMOS annealing machine via internet
- Tutorials and demos to understand annealing machine

https://annealing-cloud.com/

This web page is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Program contest for annealing machine

- HITACHI Inspire the Next
- Program contest for graph embedding in 2017, and for lowering graph order in 2018
- From the junior high school students to the 50s, answer codes submitted from some countries

Result

順位、	<u>المعرومة: 1st (entry:97)</u>	Broblem 1	
1	submitted:296	761063 (61) 20070:40	761063 (61) 20070:40
2	● siman Q	758012 (108)	758012 (108)
順位 ▼ 1	یا تاہے۔ 2nd (entry:44	•6 • Proble 20033:09	20033:09 em 2 ◆ 得点 / 時間 ◆ 35 (14)20090835 (14
	submitted:126)	1991	6:18 19916:18
2	yowa Q	193758 1985	72 (16)19375872 (16 7:05 19857:05
3	Aquarius Q	193411	87 (40) <mark>19341187</mark> (40 ອ.ດວ ວດດອອ.ດວ

- New paradigm, natural computing is necessary for system optimization with large amount of data.
- CMOS annealing machine for combinatorial optimization problem is proposed.
- 1st to 3rd, and multi-chip machines are developed to solve larger problems.
- Software techniques and related hardware techniques are necessary for practical application.

 Part of this work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).